Abstract

Carrier-based unmanned aerial vehicles (UAVs) require precise evaluation methods for their landing and arresting safety due to their high autonomy and demanding reliability requirements. In this paper, an efficient and accurate simulation method is presented for studying the arresting hook engaging arresting cable process. The finite element method and multibody dynamics (FEM-MBD) approach is employed. By establishing a rigid–flexible coupling model encompassing the UAV and arresting gear system, the simulation model for the engagement process is obtained. The model incorporates multiple coordinate systems to effectively capture the relative motion between the rigid and flexible components. The model considers the material properties, arresting gear system characteristics, and UAV state during engagement. Verification is conducted by comparing simulation results with experimental data from a referenced arresting hook rebound. Finally, simulations are performed under different touchdown points and roll angles of the UAV to analyze the stress distribution of the hook, center of gravity variations, and the tire touch and rollover cable response. The proposed rigid–flexible coupling arresting dynamics model in this paper enables the effective analysis of the dynamic behavior during the arresting hook engaging arresting cable process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call