Abstract
Moiré effects arising from mutually twisted metasurfaces have showcased remarkable wave manipulation capabilities, unveiling tantalizing emerging phenomena such as acoustic moiré flat bands and topological phase transitions. However, the pursuit of strong near-field coupling in layers has necessitated acoustic moiré metasurfaces to be tightly stacked at narrow distances in the subwavelength range. Here, moiré effects beyond near-field interlayer coupling in acoustics are reported and the concept of coupling-immune moiré metasurfaces is proposed. Remote acoustic moiré effects decoupled from the interlayer distance are theoretically, numerically, and experimentally demonstrated. Tunable out-of-plane acoustic beam scanning is successfully achieved by dynamically controlling twist angles. The engineered coupling-immune properties are further extended to multilayered acoustic moiré metasurfaces and manipulation of acoustic vortices. Good robustness against external disturbances is also observed for the fabricated coupling-immune acoustic moiré metasurfaces. The presented work unlocks the potential of twisted moiré devices for out-of-plane acoustic beam shaping, enabling practical applications in remote dynamic detection, and multiplexed underwater acoustic communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.