Abstract

An exact, analytical solution to the problem of point-source radiation in the presence of a sphere with an eccentric spherical inclusion has been obtained by combined use of the dyadic Green's function formalism and the indirect mode-matching technique. The end result of the analysis is a set of linear equations for the vector wave amplitudes of the electric Green's dyad. The point source can be anywhere, even within the aforesaid nonspherical body, and there is no restriction with regard to the electrical properties in any part of space. Several checks confirm that this solution obeys the energy conservation and reciprocity principles. Numerical results are presented for an electric Hertz dipole radiating from within an acrylic sphere, which contains an eccentric spherical cavity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.