Abstract
Interstellar dust plays decisive roles in the conversion of neutral to molecular hydrogen (H_2), the thermodynamical evolution of interstellar medium (ISM), and the modification of spectral energy distributions (SEDs) of galaxies. These important roles of dust have not been self-consistently included in previous numerical simulations of galaxy formation and evolution. We have therefore developed a new model by which one can investigate whether and how galaxy formation and evolution can be influenced by dust-related physical processes such as photo-electric heating, H_2 formation on dust, and stellar radiation pressure on dust in detail. A novel point of the model is that different dust species in a galaxy are represented by `live dust' particles (i.e., not test particles). Therefore, dust particles in a galaxy not only interact gravitationally with all four components of the galaxy (i.e., dark matter, stars, gas, and dust) but also are grown and destroyed through physical processes of ISM. First we describe a way to include dust-related physical processes in Nbody+hydrodynamical simulations of galaxy evolution in detail. Then we show some preliminary results of dust-regulated galaxy evolution. The preliminary results suggest that the evolution of dust distributions driven by radiation pressure of stars is very important for the evolution of star formation rates, chemical abundances, H_2 fractions, and gas distributions in galaxies.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have