Abstract

ABSTRACT Radiation pressure on dust is an important feedback process around star clusters and may eject gas from bright subregions in star-forming galaxies. The Eddington ratio has previously been constructed for galaxy-averaged observations, individual star clusters, and Galactic H ii regions. Here we assess the role of radiation pressure in thousands of subregions across two local star-forming galaxies, NGC 6946 and NGC 5194. Using a model for the spectral energy distribution from stellar population synthesis and realistic dust grain scattering and absorption, we compute flux and radiation pressure-mean opacities and population-averaged optical depth 〈τRP〉. Using Monte-Carlo calculations, we assess the momentum coupling through a dusty column to the stellar continuum. Optically-thin regions around young stellar populations are 30–50 times super-Eddington. We calculate the Eddington ratio for the subregions including the local mass of young and old stars and cool atomic and molecular gas. We compute the fraction of the total star formation that is currently super-Eddington, and provide an assessment of the role of radiation pressure in the dusty gas dynamics. Depending on the assumed height of the dusty gas and the age of the stellar population, we find that ∼0–10 per cent of the sightlines are super-Eddington. These regions may be accelerated to ∼5–15 km s−1 by radiation pressure alone. Additionally, our results show that for beamed radiation, the function 1 − exp (−〈τRP〉) is an excellent approximation to the momentum transfer. Opacities and optical depths are tabulated for SEDs of different stellar ages and for continuous star formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call