Abstract

We revisit the bimodal distribution of the galaxy population commonly seen in the local universe. Here we address the bimodality observed in galaxy properties in terms of spectral synthesis products, such as mean stellar ages and stellar masses, derived from the application of this powerful method to a volume-limited sample, with magnitude limit cutoff M_r = -20.5, containing about 50 thousand luminous galaxies from the SDSS Data Release 2. In addition, galaxies are classified according to their emission line properties in three distinct spectral classes: star-forming galaxies, with young stellar populations; passive galaxies, dominated by old stellar populations; and, hosts of active nuclei, which comprise a mix of young and old stellar populations. We show that the extremes of the distribution of some galaxy properties, essentially galaxy colours, 4000 A break index, and mean stellar ages, are associated to star-forming galaxies at one side, and passive galaxies at another. We find that the mean light-weighted stellar age of galaxies is the direct responsible for the bimodality seen in the galaxy population. The stellar mass, in this view, has an additional role since most of the star-forming galaxies present in the local universe are low-mass galaxies. Our results also give support to the existence of a 'downsizing' in galaxy formation, where massive galaxies seen nowadays have stellar populations formed at early times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.