Abstract

Climate change will affect key ecological processes that structure natural communities, but the outcome of interactions between individuals and species will depend on their thermal plasticity. We tested how short- and long-term exposure to projected future temperatures affects intraspecific and interspecific competitive interactions in two species of coral reef damselfishes. In conspecific contests, juvenile Ambon damselfish, Pomacentrus amboinensis, exhibited no change in aggressive interactions after 4d exposure to higher temperatures. However, after 90d of exposure, fish showed a nonadaptive reduction in aggression at elevated temperatures. Conversely, 4d exposure to higher temperature increased aggression towards conspecifics in the lemon damselfish, Pomacentrus moluccensis. 90d exposure began to reduce this pattern, but overall there was little effect of temperature. Aggression in interspecific contests increased with short-term exposure, but was significantly lower after long-term exposure indicative of acclimation. Our results show how the length of exposure to elevated temperature can affect the outcome of competitive interactions. Furthermore, we illustrate that results from intraspecific contests may not accurately predict interspecific interactions, which will challenge our ability to generalise the effects of warming on competitive interactions.

Highlights

  • Climate change will alter the physiology, behaviour, and geographical distribution of many species [1,2,3]

  • The objective of the present study was to determine how the length of exposure to elevated thermal conditions in post-settlement recruits affects the outcome of competitive interactions within and between two species of coral reef damselfish, Pomacentrus moluccensis and P. amboinensis

  • Much research undertaken on their interactions has been done at Lizard Island on the northern Great Barrier Reef, Australia (-14°67 ́S, 145°44 ́E). Both species prefer to settle to live coral [45,46] and in the wild P. moluccensis is exclusively found on live coral, while P. amboinensis is found on a broader range of habitats including dead coral and rubble [41,46]

Read more

Summary

Introduction

Climate change will alter the physiology, behaviour, and geographical distribution of many species [1,2,3]. The impact of these changes on population and community structure will depend on the outcome of biological interactions with other species [4,5]. Due to differences in thermal tolerances, some species will be more capable of maintaining performance at higher temperatures than others [6,7]. Temperature and Competitive Interactions the College of Marine and Environmental Sciences at James Cook University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call