Abstract

Interspecific competitive interactions among sessile epibenthos were studied by suspending PVC panels at Tomioka Bay, south Japan, for a maximum period of 16 mo. Interactions were monitored from photographs of a fixed area of the panels. Four panels were suspended during two different months in autumn 1991, and the development of the community was followed until December 1992. Altogether, 6511 interspecific overgrowth interactions were recorded, of which 37 resulted in standoffs and the rest in overgrowths. The competitive relationship observed in this sessile assemblage followed the pattern of a hierarchy with numerous backloops. Among the 36 species, belonging to the seven taxonomic groups encountered during the study, the colonial ascidian Didemnum moseleyi was recorded as the dominant species (with respect to competitive ability) while the barnacle Balanus trigonus was the weakest species. The month of panel exposure and whether or not the panel surface was shaded had a significant influence on the competitive ability of the sessile organisms. The order of hierarchy of the most dominant species changed with the month of panel submersion and its light conditions. Among the several abundant species tested, longer residence times were recorded for serpulid worms than for the colonial species. A significant, positive relationship was obtained between the areal cover of competitively dominant sessile organisms and the number of their interspecific interactions. From the short residence time of sessile organisms and the significant relationship between their areal cover and number of interspecific interactions, it is concluded that the interspecific interactions played important role in the species succession.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call