Abstract
Printing of conducting polymer films from water-based inks is a powerful method that can facilitate the fabrication of various types of electrochemical sensors. This paper reports on the use of ethylene glycol and quaternary ammonium salts as additives to water-based poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) inks in order to obtain conducting polymer films with improved adhesion to a carbon-based electrode substrate in aqueous environment. The modified PEDOT:PSS films deposited on glassy carbon were studied in aqueous solutions by cyclic voltammetry, electrochemical impedance spectroscopy, and potentiometry. It was found that PEDOT:PSS films modified with ethylene glycol and quaternary ammonium salts exhibit excellent adhesion to glassy carbon even after immersion in aqueous solutions for more than two months. The modified PEDOT:PSS films were electroactive, showed relatively fast ion transport properties, and were successfully applied as solid-contact material in lead(II)-selective electrodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.