Abstract

Conducting polymers (CPs), a significant class of electrochemical capacitor electrode materials, exhibit exceptional capacitive energy storage performance in aqueous electrolytes. Current research primarily concentrates on enhancing the electrical conductivity and capacitive performance of CPs via molecular design and structural control. However, the absence of a comprehensive understanding of the impact of molecular chain spatial order on ion/electron transport and capacitive performance impedes the development and optimization of advanced electrode materials. Here, a solvent treatment strategy is employed to modulate the molecular chain spatial order of PEDOT : PSS films. The results of electrochemical performance tests and Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) show that Poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonic acid) (PEDOT : PSS) films with both face-on and edge-on orientations exhibit exceptional electronic conductivity and ion diffusion efficiency, with capacitive performance 1.33 times higher than that of PEDOT : PSS films with only edge-on orientation. Consequently, molecular chain orientations conducive to charge transport not only enhance inter-chain coupling, but also effectively reduce ion transport resistance, enabling efficient capacitive energy storage. This research provides novel insights for the design and development of higher performance CPs-based electrode materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.