Abstract

AbstractCementitious material is the most commonly used encapsulation medium for low and intermediate level radioactive waste. This paper focuses on the aqueous durability of a Materials Testing Reactor (MTR) cementitious wasteform – a possible candidate for the proposed intermediate level waste management facility in Australia. A series of medium term (up to 92 months) durability tests, without leachate replacement, were conducted on samples of this wasteform.The wasteform was made from cement, ground granulated blast furnace slag and a simulated waste liquor. The compressive strength (39 MPa) was typical of MTR cement wasteforms and well above that required for handling or storage. The wasteform was an inhomogeneous mixture containing calcite, a calcium silicate hydrate phase, hydrotalcite and unreacted slag particles. After leaching for 92 months the crystallinity of the calcium silicate hydrate phase increased.The majority of the releases of Ca, Si, Al, Sr, S, Na and K was reached within 4 days of leaching, with the maxima ie. the highest concentrations in the leachates, occurring at 3 months for Ca, Al, Sr, S, Na and K, and at 1 month for Si. For the longer leach periods (6 months and 3 months respectively) there was a slight reduction in concentration in the leachates, and these levels were similar to those for the longest period of 92 months, suggesting steady-state conditions prevailing after 3 to 6 months of leaching. The highest releases of matrix elements were for Na (37%), K (40%) and S (16%). Releases for elements such as Ca, Na, Al and Sr were similar in magnitude to those reported by the UKAEA in earlier MTR studies.After leaching for 92 months there was an alteration layer about 80 ∞m deep where calcium has been depleted. Na, K and Sr showed signs of diffusion towards the outer part of the cement samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.