Abstract
The crystal structure of an 8-mer (S)-GNA duplex is presented. As a tool for phasing, the anomalous diffraction of two copper(II) ions within two artificial metallo-base pairs was employed. The duplex structure confirms a canonical Watson−Crick base pairing scheme of GNA with antiparallel strands. The duplex secondary structure is distinct from canonical A- and B-form nucleic acids and can be described as a right-handed helical ribbon wrapped around the helix axis, resulting in a large hollow core. Most intriguingly, neighboring base pairs slide strongly against each other, resulting in extensive interstrand base−base hydrophobic interactions along with unusual hydrophobic intrastrand interactions of nucleobases with their backbone. These results reveal how a minimal nucleic acid backbone can support highly stable Watson−Crick-like duplex formation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have