Abstract
Recently, carbide-free alloying systems with yield strength Rp0.1 of up to 4000MPa and outstanding thermal stability are available, which offer the possibility to elevate coating deposition temperatures up to 600°C. The present work demonstrates that the limited Ti1−xAlxN coating adhesion on a Fe–25%Co–15%Mo grade caused by the absence of carbides in the substrates can be significantly improved from HF 4 to HF 2 in the Rockwell adhesion test by plasma-assisted nitriding during sputter etching. X-ray photoelectron spectroscopy measurements reveal that the nitrogen diffusion zone is confined to the first few nanometre of the substrate surface, while mainly Mo–N and partly Fe–N bondings are formed. X-ray diffraction exhibits the formation of cubic Mo2N in the nitrided layer. The coatings show a single-phase face-centered cubic Ti1-xAlxN structure tending to a preferred (110) growth orientation with increasing nitriding time. Tribological tests performed at room temperature and 650°C indicate superior wear performance of duplex Ti1-xAlxN coated Fe–25%Co–15%Mo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.