Abstract

An analysis for crack instability in an elastic-plastic strain hardening material is presented which utilizes the J-integral and the tearing modulus parameter, T. A center-cracked panel of finite dimensions with Ramberg-Osgood material representation is analyzed for plane stress as well as plane strain. The analysis is applicable in the entire range of elastic-plastic loading from linear elastic to full yield. Crack instability is strongly influenced by the elastic compliance of the system, the conditions of plane stress or plane strain, and the hardening characteristics of the material. Numerical results indicate that if crack stability is ensured in a plane strain situation, then under the same circumstances a geometrically identical but plane stress panel will be stable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call