Abstract

In this paper, an extension to a modified Gurson porous ductile material model, namely the Dung’s model, is introduced to investigate ductile fracture processes of AA6061-T6 aluminum alloy sheets. The combined Dung–Hill48 model accounts for anisotropic hardening effects of the matrix material. The constitutive model is implemented as a user-defined material subroutine in ABAQUS/Explicit to predict ductile fracture and formability of the aluminum alloy sheets. Ductile fracture predictability of the model comes from the description of void growth in an anisotropic strain hardening material. After being calibrated the model is applied to establish a fracture plastic strain–triaxiality relation using only tensile test data of smooth and R-notched specimens. Calculations of forming limits from seven deep drawing simulations with Nakajima specimens estimate the formability of the material. Influence of the material anisotropy on the obtained forming limit diagram is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call