Abstract
<div>Earlier studies have proven how ducted fuel injection (DFI) substantially reduces soot for low- and mid-load conditions in heavy-duty engines, without significant adverse effects on other emissions. Nevertheless, no comprehensive DFI study exists showing soot reductions at high- and full-load conditions. This study investigated DFI in a single-cylinder, 1.7-L, optical engine from low- to full-load conditions with a low-net-carbon fuel consisting of 80% renewable diesel and 20% biodiesel. Over the tested load range, DFI reduced engine-out soot by 38.1–63.1% compared to conventional diesel combustion (CDC). This soot reduction occurred without significant detrimental effects on other emission types. Thus, DFI reduced the severity of the soot–NO<sub>x</sub> tradeoff at all tested conditions. While DFI delivered considerable soot reductions in the present study, previous DFI studies at low- and mid-load conditions delivered larger soot reductions (&gt;90%) compared to CDC operation at the same conditions. Therefore, the DFI configuration used here has been deemed nonoptimal (in terms of parameters such as the injector-spray and piston geometries), and several improvements are recommended for future studies with high-load DFI. These improvements include employing better spray-duct alignment, a deeper piston bowl with a smaller injector umbrella angle, and a fuel injector that opens and closes faster. The study also suggests future research to make DFI ready for commercialization, such as metal-engine tests to ensure desirable DFI performance over an engine’s complete speed/load map. Overall, this study supports the continued development and commercialization of DFI to meet upcoming emissions regulations for heavy-duty vehicles. Specifically, multicylinder engine experiments and CFD simulations should be utilized to optimize the performance and clarify the full potential of DFI.</div>
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have