Abstract

Salivary gland dysfunction worsens the quality of life, but treatment for restoration of salivary gland function is limited. Although previous reports have demonstrated the therapeutic potentials of extracellular vesicles (EVs) in different preclinical models, the role of EVs in salivary glands remains elusive. Furthermore, little is known about the roles of salivary gland-derived EVs in tissue repair or regeneration compared to other EVs. In this study, EVs secreted from salivary gland-derived mesenchymal stem cells (sgMSCs) were comparatively analyzed with those from Wharton's jelly-derived MSC (wjMSCs). sgMSCs secreted more significant amounts of EVs than wjMSCs, and salivary gland epithelial cells showed a more efficient uptake of sgMSC-EVs than wjMSC-EVs. The possibility of immune regulation was tested via macrophage polarization and LPS-induced epithelial inflammation, resulting in an M1-to-M2 shift and reversal of acinar-to-ductal metaplasia by sgMSC-EV. Furthermore, the roles of sgMSC-EV-mediated immune regulation and tissue repair were clarified in vivo via retroductal delivery of sgMSC-EVs in a mouse model of obstructive sialadenitis. Collectively, our data demonstrate the superior role of sgMSC-EVs in the recovery from salivary gland inflammation and injury and suggest EVs as therapeutic tools for salivary gland dysfunction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call