Abstract

We consider the time-discretized problem of the quasi-static evolution problem in perfect plasticity posed in a non-reflexive Banach space. Based on a novel equivalent reformulation in a reflexive Banach space, the primal problem is characterized as a Fenchel dual problem of the classical incremental stress problem. This allows to obtain necessary and sufficient optimality conditions for the time-discrete problems of perfect plasticity. Furthermore, the consistency of a primal-dual stabilization scheme is proven. As a consequence, not only stresses, but also displacements and strains are shown to converge to a solution of the original problem in a suitable topology. The corresponding dual problem has a simpler structure and turns out to be well-suited for numerical purposes. For the resulting subproblems an efficient algorithmic approach in the infinite-dimensional setting based on the semismooth Newton method is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call