Abstract
The dual of an entanglement-assisted quantum error-correcting (EAQEC) code is defined from the orthogonal group of a simplified stabilizer group. From the Poisson summation formula, this duality leads to the MacWilliams identities and linear programming bounds for EAQEC codes. We establish a table of upper and lower bounds on the minimum distance of any maximal-entanglement EAQEC code with length up to 15 channel qubits.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have