Abstract

In an earlier paper, Romanowska, Ślusarski and Smith described a duality between the category of (real) polytopes (finitely generated real convex sets considered as barycentric algebras) and a certain category of intersections of hypercubes, considered as barycentric algebras with additional constant operations. This paper is a first step in finding a duality for dyadic polytopes, analogues of real convex polytopes, but defined over the ring [Formula: see text] of dyadic rational numbers instead of the ring of reals. A dyadic [Formula: see text]-dimensional polytope is the intersection with the dyadic space [Formula: see text] of an [Formula: see text]-dimensional real polytope whose vertices lie in the dyadic space. The one-dimensional analogues are dyadic intervals. Algebraically, dyadic polytopes carry the structure of a commutative, entropic and idempotent groupoid under the operation of arithmetic mean. Such dyadic polytopes do not preserve all properties of real polytopes. In particular, there are infinitely many (pairwise non-isomorphic) dyadic intervals. We first show that finitely generated subgroupoids of the groupoid [Formula: see text] are all isomorphic to dyadic intervals. Then, we describe a duality for the class of dyadic intervals. The duality is given by an infinite dualizing (schizophrenic) object, the dyadic unit interval. The dual spaces are certain subgroupoids of the square of the dyadic unit interval with additional constant operations. A second paper deals with a duality for dyadic triangles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call