Abstract
We construct a family of dualities on some subcategories of the quasi-category S \mathcal {S} of self-small groups of finite torsion-free rank which cover the class S \mathcal {S} . These dualities extend several of those in the literature. As an application, we show that a group A ∈ S A\in \mathcal {S} is determined up to quasi–isomorphism by the Q \mathbb {Q} –algebras { Q Hom ( C , A ) : C ∈ S } \{\mathbb {Q}\operatorname {Hom}(C,A):\,C\in \mathcal {S}\} and { Q Hom ( A , C ) : C ∈ S } \{\mathbb {Q}\operatorname {Hom}(A,C):\,C\in \mathcal {S}\} . We also generalize Butler’s Theorem to self-small mixed groups of finite torsion-free rank.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.