Abstract
First, we give a necessary and sufficient condition for torsion-free finite rank subgroups of arbitrary abelian groups to be purifiable. An abelian group G is said to be a strongly ADE decomposable group if there exists a purifiable T(G)-high subgroup of G. We use a previous result to characterize ADE decomposable groups of finite torsion-free rank. Finally, in an extreme case of strongly ADE decomposable groups, we give a necessary and sufficient condition for abelian groups of finite torsion-free rank to be splitting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.