Abstract
To break down the geometry assumptions of traditional motion models (e.g., homography, affine), warping-based motion model recently becomes very popular and is adopted in many latest applications (e.g., image stitching, video stabilization). With high degrees of freedom, the accuracy of model heavily relies on data-terms (keypoint correspondences). In some low-texture environments (e.g., indoor) where keypoint feature is insufficient or unreliable, the warping model is often erroneously estimated. In this paper we propose a simple and effective approach by considering both keypoint and line segment correspondences as data-term. Line segment is a prominent feature in artificial environments and it can supply sufficient geometrical and structural information of scenes, which not only helps guild to a correct warp in low-texture condition, but also prevents the undesired distortion induced by warping. The combination aims to complement each other and benefit for a wider range of scenes. Our method is general and can be ported to many existing applications. Experiments demonstrate that using dual-feature yields more robust and accurate result especially for those low-texture images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.