Abstract

The lack of a sufficient number of reliable corners in low-textured environments is a big challenge for classical visual simultaneous localization and mapping (SLAM), especially for point feature-based methods. Many other features (i.e., line and plane segments) are often combined with points to restore an environmental structure. However, using such features requires much computational time. This work focuses on the reliable and high-performance real-time operation of a SLAM system in low-textured scenarios. It proposes a semi-direct multi-map monocular SLAM system (SM-SLAM) that combines direct tracking and feature-based map maintenance with point features and line segments. The proposed system tracks non-keyframes based on a sparse image alignment method for fast tracking, extracts and matches point features and line segments in keyframes for high-quality environment structure and motion optimization. We present an extensive evaluation on two widely-used public datasets and some challenging real-world scenarios. Experimental results show that SM-SLAM can well reconstruct a sparse 3D map with geometrical structure information in 30-40 Hz. Notably, SM-SLAM shows an accuracy improvement of more than 20% than the Oriented FAST and Rotated BRIEF feature-based SLAM (ORB-SLAM) on some low-speed, small-range camera motion datasets and performs well in low-texture scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.