Abstract

Quantum-dot cellular automata (QCA), a new computing paradigm at nanoscale, may be a prospective substitution of conventional complementary metal oxide semiconductor (CMOS)-based integrated circuits. A new dual-edge triggered JK flip-flop based on a novel dual-edge triggered structure with less fundamental building gates is proposed in QCA domain in this study. To get a more robust triggered structure, the probabilistic transfer matrix is employed to analyse the reliability of the structure. The functionalities of the dual-edge triggered structure and JK flip-flop are verified with QCADesigner, a simulation tool widely used. By arranging the clock zones serially and QCA cells logically, compared with previous circuits, both of the proposed triggered structure and JK flip-flop perform well in terms of cells count, area, complexity, QCA cost and power dissipation at different tunnelling energy levels at 2 K temperature, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call