Abstract

A dual-band water and lipid suppression sequence was developed for multislice sensitivity-encoded proton MR spectroscopic imaging of the human brain. The presaturation scheme consisted of five dual-band frequency-modulated radiofrequency pulses based on hypergeometric functions integrated with eight outer volume suppression (OVS) pulses. The flip angles of the dual-band pulses were optimized through computer simulations to maximize suppression factors over a range of transmitter amplitude of radiofrequency field and water and lipid T(1) values. The resulting hypergeometric dual band with OVS (HGDB + OVS) sequence was implemented at 3 T in a multislice sensitivity-encoded proton MR spectroscopic imaging experiment and compared to a conventional water suppression scheme (variable pulse power and optimized relaxation delays (VAPOR)) with OVS. The HGDB sequence was significantly shorter than the VAPOR sequence (230 versus 728 msec). Both HGDB + OVS and VAPOR + OVS produced good water suppression, while lipid suppression with the HGDB + OVS sequence was far superior. In sensitivity-encoded proton MR spectroscopic imaging data, artifacts from extracranial lipid signals were significantly lower with HGDB + OVS. The shorter duration of HGDB compared to VAPOR also allows reduced pulse repetition time values in the multislice acquisition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.