Abstract
Due to the weak absorption of (CH3NH3)PbI3 in the communication regime, which restricts its optoelectronic applications, we design a adjustable dual-band perfect absorber based on the (CH3NH3)PbI3 to significantly enhance its absorption capability. Since the localized plasmon (LP) mode and surface plasmon (SP) mode are excited in the structure, which can both greatly enhance light absorption of the (CH3NH3)PbI3 layer, dual-band perfect absorption peaks are formed in the communication regime, and the absorption of (CH3NH3)PbI3 layer is increased to 43.1% and 64.2% at the dual-band absorption peaks by using finite-difference time-domain (FDTD) methods, respectively. By varying some key structural parameters, the dual-band absorption peaks of (CH3NH3)PbI3 can be separately shifted in a wide wavelength region. Moreover, the designed absorber can keep good performance under wide angles of incidence and manifested polarization correlation. Furthermore, not just for (CH3NH3)PbI3, the physical mechanism in this absorber can also be utilized to strengthen the absorption of other halide perovskites.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have