Abstract

Abstract With the rapid development of communication technology, the researches of multi-band filtering circuits have become more and more important. Multimode resonator (MMR) is one of the vital methods to provide multi-resonant modes within a single design. In this paper, a dual-band ultra-wideband bandpass filter (UWB-BPF) using stepped impedance stub-loaded resonators (SI-SLR) is presented. The main advantage of using SI-SLR is to have better performance with multimode behavior and more parameters to control resonant modes. SI-SLR combines the advantages of SIR and SLR structures, which gives a compact, high-performance multiband filter. The proposed filter design has compact size, sharp and flat response with low insertion loss (IL), low return loss (RL), and high band-to-band rejection. The filter is designed for UWB communication in wireless body area networks and fabricated on Arlon substrate with relative permittivity ${\varepsilon_{\textrm{r}}} = 3.25$ , thickness $0.8\;{\textrm{mm}}$ . The resulted dual-bands are centered at $4{\textrm{ GHz}}$ and $8.3{\textrm{ GHz}}$ with fractional bandwidths $37{\textrm{% }}$ and $48{\textrm{%}}$ . The simulation was carried out using CST Microwave Studio. The filter provides good passband performances, with IL 0.49 dB and 0.31 dB at the center frequency of lower and higher bands, respectively. The band-to-band 40 dB rejection is realized by adding circular spiral at the input/output of the filter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call