Abstract

This work theoretically proposed dual terahertz (THz) slow light plateaus by tuning the destructive interference between a toroidal magnetic momentum and magnetic dipole momentum. The metasurfaces are in a sandwich structure. A metallic cut-wire is patterned on one side of polyimide thin-film, and a rectangular split-ring resonator (SRR) on the other side with asymmetric layout. By translating the SRR along the cut-wire from the top terminal to the bottom terminal of the cut-wire, dual slow light plateaus are found in the transparency window at a certain range of displacement. A maximum of 40.4 ps group delay is achieved as the displacement achieves 9 μm. The numerical mapping of electromagnetic field indicates that the electrical dipole on metallic cut-wire results in a localized toroidal magnetic momentum, while the inductive-capacitor oscillation of SRR results in a magnetic dipole momentum. These two momentums have opposite directions, which will repel each other at certain displacement, creating the transparency windows. Furthermore, an electrical coupling takes place in between the bilayer metasurface so that the slow light achieves a maximum, with the aforementioned two mechanisms working in coincidence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call