Abstract

Metamaterials have been engineered to achieve electromagnetically induced transparency (EIT)-like behavior, analogous to those in quantum optical systems. These meta-devices are opening new paradigms in terahertz communication, ultra-sensitive sensing and EIT-like anti-reflection. The controlled coupling between a sub-radiant and a super-radiant particle in the unit cells of these metamaterial can enable multiple narrow plasmon induced transparency (PIT) windows over a broad band, with considerable group delay of electromagnetic field (slow light effect). Phase coherence between these PIT windows is highly desired for next-generation multichannel communication network. Herein, we numerically and experimentally validate a controllable frequency hopping mechanism between "slow light" windows in the terahertz (THz) regime. The effective media are composed of plasmonic "molecules" in which an asymmetric split-ring resonator (ASRR) or Fano resonator is displaced on the side of a cut-wire (Lorentz oscillator). Two metasurfaces where ASRR is on opposite side of the cut-wire are investigated. In these two cases, the proximity of the cut-wire to the gap on the ASRR having asymmetry is different. On one side, when the gap is nearer to the cut wire, displacing the ASRR along the cut-wire, produces only one narrow transparency window at 0.8 THz, corresponding to 20 ps group delay. When the ASRR is positioned on the opposite side, such that the gap is further, two transparency windows are observed when the ASRR is displaced along the cut-wire. That is, the transparency window hops from 0.8 THz to 1.2 THz. This corresponds to an increase from 20 to 30 ps in slow light effect. Numerical simulations suggest these single or multiple PIT windows occur if the couplings between the plasmonic modes in the different arrangements are either in-phase or out-of-phase, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call