Abstract
Detection of immunoglobulins (Igs) is of clinical significance for early diagnosis and timely treatment of diseases. Herein, a dual-template molecularly imprinted (DTMI) electrochemical biosensor was developed for IgG-IgM combined assay. In this DTMI electrochemical biosensor, Prussian blue (PB) and thionine (TH) decorated on graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs), respectively, were utilized as the dual-signal probes, and Au nanoparticles (AuNPs) were used for Igs anchoring and signal amplification. Polypyrrole (PPy) was electrodeposited on the biosensor surface and acted as the molecularly imprinted polymers (MIPs). After the removal of the IgG and IgM templates, the resultant DTMI electrochemical biosensor was used for IgG-IgM combined assay, and the concentrations of IgG and IgM could be indicated by the changes in the peak currents of PB (ΔIPB) and TH (ΔITH), respectively. The DTMI electrochemical biosensor displayed a wide linear range and a low limit of detection (LOD) for both IgG (28.80 pg mL−1) and IgM (0.58 pg mL−1). Finally, the developed DTMI biosensor was used for IgG-IgM combined assay in clinical serum samples, and the results were comparable to those obtained by conventional immunoturbidimetry, implying its great potential in clinical diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.