Abstract

Despite the continuously growing repertoire of new and improved anti-cancer therapies, triple-negative breast cancer (TNBC) remains a clinical challenge to treat. In this sense, targeting signaling pathways such as Notch and Wnt/β-catenin have attracted growing attention. This work aimed at investigating the possible antitumor effects of IMR-1 as a Notch inhibitor, PRI-724 as a Wnt/β-catenin inhibitor, as well as their combination and to explore the possible crosstalk between Notch and Wnt/β-catenin signaling pathways in MDA-MB-231 TNBC cell line. Microculture tetrazolium test (MTT) was used to determine the drug growth inhibition (GI50), and the results were analyzed using CompuSyn 3.0.1 software. MDA-MB-231 cells were divided into four treatment groups including positive control, IMR-1-treated, PRI-724-treated, and combination-treated groups. Sandwich enzyme-linked immunosorbent assay (ELISA) was used for the determination of the protein levels of hairy and enhancer of split-1 (HES-1), Notch-1, β-catenin, cyclin-D1, and vascular endothelial growth factor (VEGF1). HES-1 gene expression was assessed by quantitative real-time polymerase chain reaction. Statistical analyses were performed using GraphPad Prism Software. The GI50 for IMR-1 and PRI-724 were 15.3μM and 0.69μM, respectively. Upon treatment of MDA-MB-231 cells with these drugs, HES-1 gene expression was up-regulated due to single and combined treatments. Moreover, the protein levels of cyclin-D1, VEGF1, HES-1, and Notch-1 were reduced, while those of active β-catenin and active caspase-3 were elevated. IMR-1/PRI-724 combination augmented IMR-1- and PRI-724-mediated effects on MDA-MB-231 cells by initiating apoptotic cell death. Further in vitro and in vivo studies are warranted to support our findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call