Abstract

Alzheimer's disease (AD) is a neurodegenerative disease that affects over 55 million patients worldwide. Most of the approved small-molecule drugs for AD have been designed to tackle a single pathological hallmark, such as cholinergic dysfunction or amyloid toxicity, and thus may not fully address the multifactorial nature of the disease. Inhibition of both cholinesterase and glycogen synthase kinase-3β (GSK-3β) has emerged as a promising strategy to modulate AD. However, the dual inhibition of these two targets posts challenges in molecular design: issues related to target engagements and biopharmaceutical properties in particular must be overcome. In this review, we discuss the physiopathological roles and structures of cholinesterase and GSK-3β as well as recently reported dual-target inhibitors. We critically evaluate the current status of the discovery of dual-target inhibitors of cholinesterase and GSK-3β, and highlight further perspectives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call