Abstract

Due to multifactorial nature of Alzheimer’s disease one target-one ligand hypothesis often looks insufficient. BACE-1 and GSK-3β are well established therapeutic drug targets and interaction between BACE-1 and GSK-3β pathways has also been established. Thus, designing of dual inhibitor for these two targets seems rational and may provide effective therapeutic strategies against AD. Recent studies revealed that only two scaffolds i.e. triazinone and curcumin act as a dual inhibitor against BACE-1 and GSK-3β. Thus, this discovery set the path to screen new chemical entities from a vast chemical space (∼1060 compounds) that inhibit both the targets. However, small part of the large chemical space will only show biological activity for specific targets. Virtual screening of large libraries is impractical and computational expensive especially in case of dual inhibitor design. In the case of dual or multi target inhibitor designing, we screened the database for each target that further increases time and resources. In this study we have done physicochemical descriptor based profiling to know the biological relevant chemical space for BACE-1 and GSK-3β inhibitors and proposed the suitable range of important physicochemical properties, occurrence of functional groups. We generated scaffolds tree of known inhibitors of BACE-1 and GSK-3β suggesting the common structure/fragment that can be used to design dual inhibitors. This approach can filter the potential dual inhibitor candidates of BACE-1 and GSK-3β from non inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call