Abstract
Cardiac CT is a useful tool for cardiovascular diagnostics that offers different acquisition modes, each with its advantages. The development of direct converting detector technology has resulted in the clinical translation of dual-source photon-counting CT. This takes advantage of the improved image quality at high heart rates from dual-source CT while making available spectral results for more precise material characterization and quantification. To evaluate the stability of spectral results among different acquisition modes and heart rates, a cardiac motion phantom with a rod mimicking a 50% coronary stenosis was scanned with a dual-source photon-counting CT in three different acquisition modes (retrospective dual-source spiral, prospective dual-source step-and-shoot, dual-source flash spiral) and at different heart rates (60, 80, 100 bpm). Dice scores of stenosed regions relative to a static scan, eccentricity of non-stenosed regions, full width half max, and normalized area under the curve of line profiles were calculated for iodine density maps, and virtual mono-energetic images at 40 and 70 keV. Dice scores and eccentricity were consistent and not significantly affected by acquisition mode or heart rate for spectral results. Full width half max and normalized area under the curve similarly illustrated minor differences between acquisition modes and heart rates. The consistency in these metrics demonstrate preserved image structure and allows for the use of spectral results with high confidence. Dual-source photon-counting CT will enable cardiovascular diagnostics with better material characterization and differentiation.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have