Abstract

The aim of this study is to present forced convective nanofluid flow over a moving plate embedded in an absorbent medium. Following Darcy law’s for porous medium, the flow analysis is explored in attendance of warmth basis/drop. The main objective of this study is to explore the effects of Brownian motion and thermophoresis. The plate is considered to move in both directions: in the way of movement of fluid and in the opposite route of fluid movement. Similarity alterations have been applied to alter the leading partial differential equations (PDEs) to ordinary differential equations (ODEs). Numerical solutions have been obtained with the help of MATHEMATICA software. Dual solutions have been obtained when the plate and liquid go in reverse ways. Wall shear stress, Nusselt and Sherwood numbers all are found to rise with the rising permeability parameter of absorbent medium. For Nusselt and Sherwood numbers, ranges of dual solutions diminish by the mounting values of permeability parameter K. The critical values for porosity parameter [Formula: see text], 0.02, 0.03 are [Formula: see text], [Formula: see text], [Formula: see text], respectively. For decreasing values of s, range of dual solutions decreases. For [Formula: see text], dual solutions exist in the range [Formula: see text].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.