Abstract

A comprehensive analysis of double stratification impacts on the MHD flow of a nanofluid produced by a porous stretching sheet has been conducted by using a numerical approach. The convective boundary conditions (CBCs) and Newtonian heating (NH) cases have been particularly considered in this problem. The governing equations defined in partial differential equations (PDEs) form are converted into ordinary differential equations (ODEs) by using appropriate transformations to meet the requirement of the used numerical method which is bvp4c in the MATLAB software package. Moreover, the numerical findings of the ODEs are displayed via graphical and tabular forms. The impacts of different flow parameters used in particular problem are discussed for the profiles of the velocity, temperature and concentration of micropolar nanofluid along the values of coefficient of skin-friction [Formula: see text], Nusselt number [Formula: see text], the Sherwood number [Formula: see text] and in relation with the variation parameters in general, CBC and NH are calculated to get a clear insight into the flow situation. Some of the findings show that the skin friction increases by increase in magnetic, permeability and material parameters in all cases but the skin friction is reduced by increasing the thermophoresis parameter for CBC and NH cases, respectively. Microrotation profile decreases when material parameter increases, whereas microrotation profiles enhance with increase of the magnetic field and porosity of porous medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.