Abstract
Photocatalytic technology provides an effective strategy for aerobic purification of dilute gaseous NO pollutant, but suffers from its low efficiency. In this study, we demonstrate that the bicomponent Au/CeO2 photocatalyst possesses an enhanced photocatalytic NO removal performance under visible light irradiation, with a higher NO conversion efficiency (65%) and triple rate constant (0.1451 min−1) versus CeO2 (50%, 0.0448 min−1). Density function theory calculations and experimental results revealed that oxygen vacancies on the CeO2 component could favorably initiate the adsorption and activation of O2 to generate O2−, simultaneously, Au nanoparticles loaded on the CeO2 surface were active centers for adsorption and activation of NO to produce NO+ by plasmonic holes of the Au under visible light irradiation. Subsequently, these O2− and NO+ species generated via dual-site activation pathway on Au/CeO2 photocatalyst reacted spontaneously to generate the final NO3−, leading to enhanced photocatalytic removal of NO. This study sheds light on a dual-site induced photocatalytic NO oxidation and advances the design of effective air purification photocatalyst.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have