Abstract

Adenosine triphosphate (ATP) has an irreplaceable role in the maintenance of many physiological processes and biological functions, and can be employed as an indicator of many diseases. In this work, we constructed a simple and sensitive dual-signal fluorescence aptasensing system for ATP detection with berberine as the signal reporter, ATP-aptamer as the recognition unit and MoS2 nanosheets as the signal amplification. In the absence of ATP, berberine can bind to the single-stranded DNA (ssDNA) of ATP-aptamer and selectively assemble on the surface of MoS2 nanosheets, leading to the fluorescence quenching of bererbine based on the fluorescence resonance energy transfer, denoted by “OFF”. Accordingly, the fluorescence anisotropy signal is enhanced due to restriction on rotate of the fluorescent probe and denoted as “ON”. Conversely, in the presence of ATP, it specifically interacts with ATP-aptamer and switches the free-curled single-stranded of ATP-aptamer to the G-quadruplex structure of ATP-aptamer/ATP/berberine, causing the detachment from the surface of the MoS2 nanosheet. Accordingly, the fluorescence signal was reversed from “OFF” to “ON”, and the fluorescence anisotropy signal was turned “ON” to “OFF”. The developed aptasensing system achieved a desirable sensitivity of 40.0 nM with fluorescent mode, and of 20.8 nM with fluorescent anisotropic mode. The sensing system has demonstrated high quality detection performance in human serum sample, and obtained the satisfactory recovery results for fluorescent of 93.0–108.5%, fluorescent anisotropic of 96.4–106.7%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call