Abstract

We demonstrate experimental evidence of the effect of surface plasmon resonance of noble metal nanoparticles (NPs) on the activity of a well-known biomedicinal drug in the proximity of a semiconductor having a wide band gap for enhanced photodynamic therapy (PDT) efficacy. We have chosen riboflavin (Rf) (or vitamin B2) as a model photosensitizer, attached with ZnO NPs and further attached with gold (Au) NP-decorated ZnO to increase the efficiency. The synthesized nanohybrids are characterized with the help of different microscopic, optical spectroscopic, and density functional theory (DFT)-based techniques. The DFT and time-dependent DFT-based calculations validate the experimental findings. A detailed ultrafast spectroscopic study has been carried out further to study the excited-state charge dynamics in the interface of the nanohybrids. The occurrence of a Förster resonance energy transfer (FRET) between Rf and Au has been found to be the key reason for the increased efficiency in the Rf-ZnO-Au nanohybrid over the Rf-ZnO one. The dipolar coupling between Au and Rf in the Rf-ZnO-Au nanohybrid further facilitates the generation of reactive oxygen species (ROS) in comparison to Rf-ZnO under blue-light irradiation. The greater efficiency in ROS generation by the Rf-ZnO-Au nanohybrid has been utilized for antimicrobial action against methicillin-resistant S. aureus (MRSA). Overall, the present study highlights the dual sensitization for achieving enhanced electron injection efficiency in the Rf-ZnO-Au nanohybrid in order to use it as an antibacterial agent that could be translated in PDT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call