Abstract

Photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure exhibiting cytotoxic effects toward malignant cells. Hydrophobic nature of most photosensitizers used in PDT with lower light absorption ability restricts practical use of PDT. Herein, we have employed a squaraine drug (SQ) with 665 nm absorbance peak maxima as the photosensitizing agent and evaluate its photo-physical properties. The tendency of aggregation formation in aqueous media limits its practical usefulness. Thus, we have synthesised wide band gap semiconductor zinc oxide (ZnO) nanoparticles and functionalized the surface using squaraine molecules. The molecular cross-talking was evaluated using excited state fluorescence lifetime decay profiles and by employing Fӧrster resonance energy transfer (FRET) technique. The nanohybrids show improvement in three aspects compared to bare SQ molecule such as lesser aggregate formation in aqueous media, pH responsive precipitation of the drug and improvement of photo-induced reactive oxygen species (ROS) generation. Ultrafast dynamical study at the inorganic (ZnO) - organic (SQ) interface depicts presence of photo-induced charge transfer process at the junction which indeed improves the ROS generation capability. Finally, the photodynamic action has been evaluated in human breast cancer cell line MCF-7. The nanohybrids depict enhanced photo toxicity in cancer cell with loss of adherence and typical morphology of cancerous cell depicting controlled cell death. The present study employ characterisation of nanohybrids for potential use in PDT for cancer treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.