Abstract

Computer-aided diagnosis (CAD) is an important work which can improve the working efficiency of physicians. With the availability of large-scale data sets, several methods have been proposed to classify pathology on chest X-ray images. However, most methods report performance based on a frontal chest radiograph, ignoring the effect of the lateral chest radiography on the diagnosis. This paper puts forward a kind of model, Dual-Ray Net, of a deep convolutional neural network which can deal with the front and lateral chest radiography at the same time by referring the method of using lateral chest radiography to assist diagnose during the diagnosis used by radiologists. Firstly, we evaluated the performance of parameter migration to small data after pre-training for large datasets. The data sets for pre-training are chest X-ray 14 and ImageNet respectively. The results showed that pre-training with chest X-ray 14 performed better than with the generic dataset ImageNet. Secondly, We evaluated the performance of the Frontal and lateral chest radiographs in different modes of input model for the diagnosis of assisted chest disease. Finally, by comparing different feature fusion methods of addition and concatenation, we found that the fusion effect of concatenation is better, which average AUC reached 0.778. The comparison results show that whether it is a public or a non-public dataset, our Dual-Ray Net (concatenation) architecture shows improved performance in recognizing findings in CXR images when compared to applying separate baseline frontal and lateral classes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call