Abstract

We have developed and demonstrated a high-sensitivity trace gas instrument employing two mid-infrared quantum cascade lasers and an astigmatic Herriott sample cell with up to a 240 m path length. Several aspects of astigmatic Herriott cell optics have been addressed to enable operation at a high pass number (up to 554), including aberrations and pattern selection to minimize interference fringes. The new instrument design, based on the 200 m cell, can measure various atmospheric trace gases, depending on the installed lasers, with multiple trace gases measured simultaneously. Demonstrated concentration noise levels (1 s average) are 40 parts per trillion [(ppt) 10(-12)] for formaldehyde, 10 ppt for carbonyl sulfide, 110 ppt for hydrogen peroxide (H2O2), and 180 ppt for nitrous acid (HONO). High-precision measurements of nitrous oxide and methane have been recorded at the same time as high-sensitivity measurements of HONO and H2O2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.