Abstract

A dual-purpose gas chromatographic injection device, capable of injecting pressurized liquid sample of up to 5000 psig and gas sample with a volume as high as 5000 μL, has been successfully developed and implemented. The injection device is synergized by the effectiveness of a classical flash vaporization of a syringe injection and the reliability of a proven rotary valve. Depending on the matrix involved, this injection device employs either a commercially available four-port internal valve for liquid sampling or a six-port external valve for gas sampling, a modified removable needle used in standard liquid syringe, and an auxiliary flow stream that can be either mechanical or electronic flow controlled for solute transfer. For pressurized liquid, the device was found suitable of up to nC 16 hydrocarbon with no observable carry-over despite the injection device was operating at ambient temperature. A relative standard deviation of less than 2% ( n = 20) was obtained for hydrocarbon compounds ranging from nC 8 to nC 16. For gas injection, the device performed well even under difficult chromatographic conditions such as with a low column inlet pressure of less than 1 psig. A relative standard deviation of less than 0.5% ( n = 10) was obtained for reactive sulfur compounds such as alkyl mercaptans. The device can be operated manually or automated with pneumatic or electrical actuator, is platform neutral, and can be moved amongst instruments without hardware modification as well as implemented for on-line or in situ applications. In this paper, the utility of the device was also demonstrated with selected GC applications of industrial significance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.