Abstract

Soil water content is the most sought-after soil physical parameter. Recent experiments have shown that dual probe heat pulse (DPHP) sensors can be used to determine volumetric water content of soil without roots. Little work has been done to document the performance of DPHP sensors in the presence of roots, and no work has been done with a taprooted plant. Thus, the objective of this experiment was to determine the accuracy of DPHP sensors in measuring volumetric water content ( θ v) and changes in volumetric soil water content (Δ θ v) in soil with a branched taproot system. Another objective was to determine plant water use. A sunflower plant ( Helianthus annuus L. `Hysun 354') was grown in a column (0.20 m in diameter and height) with Haynie very fine sandy loam (coarse-silty, mixed, calcareous, mesic Mollic Udifluvents; FAO-Eutric Fluvisols) containing 11 DPHP sensors. Results from the sensors were compared with those from the gravimetric method. Discrepancies between measurements of soil volumetric water content and changes of soil volumetric water by the DPHP and gravimetric methods were small (within 0.018 and 0.01 m 3 m −3, respectively). The sunflower had a small amount of nocturnal transpiration, and roots took up water at a higher rate near the surface of the soil than at deeper depths. The results showed that the DPHP technique can monitor volumetric soil water content in the presence of a taproot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call