Abstract

Poly (ethylene terephthalate) (PET) has been widely used for drink bottles, food packing, films, and fibers, resulting in millions of tons of waste PET. Less than 10% of that waste is recycled, and the rest is discarded or incinerated. Waste PET upcycling employs chemical recycling and particularly glycolysis to create the bis(2-hydroxyethyl) terephthalate (BHET) monomer. Herein, we report a dual-porous zeolitic imidazolate framework-8 nanoparticle (DPZIF-8) heterogeneous catalyst for efficient PET glycolysis. The DPZIF-8 nanoparticles were prepared using a triethylamine modulator, which can control the nucleation and growth mechanisms of the ZIF-8 nanoparticles. The DPZIF-8 nanoparticles include both intrinsic micropores and particle-particle adhesion-induced mesopores that can provide a larger external surface area of the zinc sites in the ZIF-8 architecture. The PET glycolysis catalyzed by DPZIF-8 at 180 °C and 1 atm for 4 h shows a PET conversion of 91.7% and a BHET yield of 76.1%, the latter particularly being much higher than with a traditional heterogeneous ZIF-8 catalyst. This dual-porous structure rational design strategy can be versatile for other metal–organic frameworks (MOFs) to increase the interfacial catalytic reaction sites between the metal–organic framework and the polymer, enhancing the PET depolymerization performance and efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.