Abstract

A new two-port dual-polarized planar antenna with an integrated feeding circuit for in-band full-duplex (FD) (IBFD) applications is presented. The antenna consists of four H-shape slots, stacked patches for enhanced bandwidth (BW), and a separate layer of two differential (0° and 180° split) power dividers connected using vertical transmission lines which define the feeding system. The multilayer antenna is well matched from about 2.2 to 2.5 GHz with isolation values from about 40 to 60 dB. When compared to similar IBFD antenna systems, the proposed configuration provides a higher isolation BW (10%) and higher gain (7.8 dBi) whilst adopting a simple feeding network. Also, by using the proposed feeding circuit, the manufactured antenna does not require any external cables and couplers. This simplifies the structure and reduces the number of cable connections. This allows for other analog-based self-interference reduction schemes for further improvements in the transmit and receive data link. In addition, the proposed antenna design was extended to a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$4 \times 1$ </tex-math></inline-formula> array. These dual-differential IBFD antenna systems are a good alternative to more conventional FD designs which typically require external coupler-based feeding. In addition, the operating BWs and isolation values offered by these S-band systems can support new data link possibilities for beam steering and future IBFD wireless networks by low-cost antenna and feeding circuit integration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.