Abstract

The development of dual-polarization irreversible radiators that can operate without external magnetic field is an arduous task. To avoid the need of strong magnetic field, a dual-polarization nonreciprocal thermal radiator with the introduction of Weyl semimetal is demonstrated. It consists of cross-shaped silicon nanopores, Weyl semimetal, and Ag reflective layer. The simulation results show that the proposed radiator offers both TE- and TM-polarized strong irreversible radiation with an incident angle of 1.6°. The TE-polarized absorptivity and TM-polarized emissivity are 98.8% and 97.6%, respectively. The dual-polarization nonreciprocity exceeds 80%. The physical principle is explained by the electric field energy distribution and impedance matching theory. The demonstrated scheme and radiator have potential application in dual-polarization multi-band irreversible radiation and thermal management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.