Abstract
Two-dimensional (2D) MXene materials with innovative properties and versatile applications have gained immense popularity among scientists. The green and environmentally friendly Lewis acid salt etching route has opened up immense possibilities for the advancement of 2D MXene materials. In this study, we precisely etched the Al element from the double A-element MAX phases Ti2(SnyAl1-y)C by employing Lewis molten salt guided by redox potentials. This approach led to the discovery of a novel Ti2SnyCClx dual-phase structure consisting of Ti2SnC and Ti2CClx. We then established that the etching of the MAX phase via Lewis acid salt is facilitated by the oxidation of M-site elements, with the MX sublayer acting as an electron transmission conduit to enable the oxidation of A-site elements. This work is dedicated to unraveling the underlying mechanisms governing the etching processes using Lewis molten salt, thereby contributing to a more profound comprehension of these innovative etching routes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.