Abstract
In this paper, a wideband printed polygon-shaped monopole antenna has been designed using microstrip line feeding technique which provides dual-notch band characteristics (2.98–3.19[Formula: see text]GHz) and (3.62–5.00[Formula: see text]GHz) by the use of slots geometry in both the patch and the ground plane. The results of the antenna have been compared both with and without slots in both planes. The initial antenna without DGS and slots in the patch was made to work in the frequency range from 2.56–5.98[Formula: see text]GHz having impedance bandwidth of about 80.09%. The proposed antenna can be made usable for multi-band applications such as WLAN (2.4/3.2/5.2/5.8[Formula: see text]GHz) and Wi-MAX (3.5 and 5.5[Formula: see text]GHz) applications providing fractional bandwidth (FBW) of 85.36% (2.33–5.80[Formula: see text]GHz) and maximum peak gain of 5.65[Formula: see text]dBi at 3.50[Formula: see text]GHz. The value of return loss obtained is about 53.36[Formula: see text]dB at 2.56[Formula: see text]GHz. Prototype of the final antenna is fabricated and the results are verified with the simulated ones.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have