Abstract

In this paper, a wideband printed polygon-shaped monopole antenna has been designed using microstrip line feeding technique which provides dual-notch band characteristics (2.98–3.19[Formula: see text]GHz) and (3.62–5.00[Formula: see text]GHz) by the use of slots geometry in both the patch and the ground plane. The results of the antenna have been compared both with and without slots in both planes. The initial antenna without DGS and slots in the patch was made to work in the frequency range from 2.56–5.98[Formula: see text]GHz having impedance bandwidth of about 80.09%. The proposed antenna can be made usable for multi-band applications such as WLAN (2.4/3.2/5.2/5.8[Formula: see text]GHz) and Wi-MAX (3.5 and 5.5[Formula: see text]GHz) applications providing fractional bandwidth (FBW) of 85.36% (2.33–5.80[Formula: see text]GHz) and maximum peak gain of 5.65[Formula: see text]dBi at 3.50[Formula: see text]GHz. The value of return loss obtained is about 53.36[Formula: see text]dB at 2.56[Formula: see text]GHz. Prototype of the final antenna is fabricated and the results are verified with the simulated ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.